

Variables are used to store values. A string is a series of
characters, surrounded by single or double quotes.

Hello world

print("Hello world!")

Hello world with a variable

msg = "Hello world!"
print(msg)

Concatenation (combining strings)

first_name = 'albert'
last_name = 'einstein'
full_name = first_name + ' ' + last_name
print(full_name)

A list stores a series of items in a particular order. You
access items using an index, or within a loop.

Make a list

bikes = ['trek', 'redline', 'giant']

Get the first item in a list

first_bike = bikes[0]

Get the last item in a list

last_bike = bikes[-1]

Looping through a list

for bike in bikes:
 print(bike)

Adding items to a list

bikes = []
bikes.append('trek')
bikes.append('redline')
bikes.append('giant')

Making numerical lists

squares = []
for x in range(1, 11):
 squares.append(x**2)

List comprehensions

squares = [x**2 for x in range(1, 11)]

Slicing a list

finishers = ['sam', 'bob', 'ada', 'bea']
first_two = finishers[:2]

Copying a list

copy_of_bikes = bikes[:]

Tuples are similar to lists, but the items in a tuple can't be
modified.

Making a tuple

dimensions = (1920, 1080)

If statements are used to test for particular conditions and
respond appropriately.

Conditional tests

equals x == 42
not equal x != 42
greater than x > 42
 or equal to x >= 42
less than x < 42
 or equal to x <= 42

Conditional test with lists

'trek' in bikes
'surly' not in bikes

Assigning boolean values

game_active = True
can_edit = False

A simple if test

if age >= 18:
 print("You can vote!")

If-elif-else statements

if age < 4:
 ticket_price = 0
elif age < 18:
 ticket_price = 10
else:
 ticket_price = 15

Covers Python 3 and Python 2

Dictionaries store connections between pieces of
information. Each item in a dictionary is a key-value pair.

A simple dictionary

alien = {'color': 'green', 'points': 5}

Accessing a value

print("The alien's color is " + alien['color'])

Adding a new key-value pair

alien['x_position'] = 0

Looping through all key-value pairs

fav_numbers = {'eric': 17, 'ever': 4}
for name, number in fav_numbers.items():
 print(name + ' loves ' + str(number))

Looping through all keys

fav_numbers = {'eric': 17, 'ever': 4}
for name in fav_numbers.keys():
 print(name + ' loves a number')

Looping through all the values

fav_numbers = {'eric': 17, 'ever': 4}
for number in fav_numbers.values():
 print(str(number) + ' is a favorite')

Your programs can prompt the user for input. All input is
stored as a string.

Prompting for a value

name = input("What's your name? ")
print("Hello, " + name + "!")

Prompting for numerical input

age = input("How old are you? ")
age = int(age)

pi = input("What's the value of pi? ")
pi = float(pi)

A while loop repeats a block of code as long as a certain
condition is true.

A simple while loop

current_value = 1
while current_value <= 5:
 print(current_value)
 current_value += 1

Letting the user choose when to quit

msg = ''
while msg != 'quit':
 msg = input("What's your message? ")
 print(msg)

A class defines the behavior of an object and the kind of
information an object can store. The information in a class
is stored in attributes, and functions that belong to a class
are called methods. A child class inherits the attributes and
methods from its parent class.

Creating a dog class

class Dog():
 """Represent a dog."""

 def __init__(self, name):
 """Initialize dog object."""
 self.name = name

 def sit(self):
 """Simulate sitting."""
 print(self.name + " is sitting.")

my_dog = Dog('Peso')

print(my_dog.name + " is a great dog!")
my_dog.sit()

Inheritance

class SARDog(Dog):
 """Represent a search dog."""

 def __init__(self, name):
 """Initialize the sardog."""
 super().__init__(name)

 def search(self):
 """Simulate searching."""
 print(self.name + " is searching.")

my_dog = SARDog('Willie')

print(my_dog.name + " is a search dog.")
my_dog.sit()
my_dog.search()

Your programs can read from files and write to files. Files
are opened in read mode ('r') by default, but can also be
opened in write mode ('w') and append mode ('a').

Reading a file and storing its lines

filename = 'siddhartha.txt'
with open(filename) as file_object:
 lines = file_object.readlines()

for line in lines:
 print(line)

Writing to a file

filename = 'journal.txt'
with open(filename, 'w') as file_object:
 file_object.write("I love programming.")

Appending to a file

filename = 'journal.txt'
with open(filename, 'a') as file_object:
 file_object.write("\nI love making games.")

Exceptions help you respond appropriately to errors that
are likely to occur. You place code that might cause an
error in the try block. Code that should run in response to
an error goes in the except block. Code that should run only
if the try block was successful goes in the else block.

Catching an exception

prompt = "How many tickets do you need? "
num_tickets = input(prompt)

try:
 num_tickets = int(num_tickets)
except ValueError:
 print("Please try again.")
else:
 print("Your tickets are printing.")

Functions are named blocks of code, designed to do one
specific job. Information passed to a function is called an
argument, and information received by a function is called a
parameter.

A simple function

def greet_user():
 """Display a simple greeting."""
 print("Hello!")

greet_user()

Passing an argument

def greet_user(username):
 """Display a personalized greeting."""
 print("Hello, " + username + "!")

greet_user('jesse')

Default values for parameters

def make_pizza(topping='bacon'):
 """Make a single-topping pizza."""
 print("Have a " + topping + " pizza!")

make_pizza()
make_pizza('pepperoni')

Returning a value

def add_numbers(x, y):
 """Add two numbers and return the sum."""
 return x + y

sum = add_numbers(3, 5)
print(sum)

More cheat sheets available at More cheat sheets available at

If you had infinite programming skills, what would you
build?

As you're learning to program, it's helpful to think
about the real-world projects you'd like to create. It's
a good habit to keep an "ideas" notebook that you
can refer to whenever you want to start a new project.
If you haven't done so already, take a few minutes
and describe three projects you'd like to create.

Simple is better than complex

If you have a choice between a simple and a complex
solution, and both work, use the simple solution. Your
code will be easier to maintain, and it will be easier
for you and others to build on that code later on.

Use square brackets to define a list, and use commas to
separate individual items in the list. Use plural names for
lists, to make your code easier to read.

Making a list

users = ['val', 'bob', 'mia', 'ron', 'ned']

You can add elements to the end of a list, or you can insert
them wherever you like in a list.

Adding an element to the end of the list

users.append('amy')

Starting with an empty list

users = []
users.append('val')
users.append('bob')
users.append('mia')

Inserting elements at a particular position

users.insert(0, 'joe')
users.insert(3, 'bea')

Covers Python 3 and Python 2

The sort() method changes the order of a list permanently.
The sorted() function returns a copy of the list, leaving the
original list unchanged. You can sort the items in a list in
alphabetical order, or reverse alphabetical order. You can
also reverse the original order of the list. Keep in mind that
lowercase and uppercase letters may affect the sort order.

Sorting a list permanently

users.sort()

Sorting a list permanently in reverse alphabetical
order

users.sort(reverse=True)

Sorting a list temporarily

print(sorted(users))
print(sorted(users, reverse=True))

Reversing the order of a list

users.reverse()

A list stores a series of items in a particular order.
Lists allow you to store sets of information in one
place, whether you have just a few items or millions
of items. Lists are one of Python's most powerful
features readily accessible to new programmers, and
they tie together many important concepts in
programming.

You can remove elements by their position in a list, or by
the value of the item. If you remove an item by its value,
Python removes only the first item that has that value.

Deleting an element by its position

del users[-1]

Removing an item by its value

users.remove('mia')

If you want to work with an element that you're removing
from the list, you can "pop" the element. If you think of the
list as a stack of items, pop() takes an item off the top of the
stack. By default pop() returns the last element in the list,
but you can also pop elements from any position in the list.

Pop the last item from a list

most_recent_user = users.pop()
print(most_recent_user)

Pop the first item in a list

first_user = users.pop(0)
print(first_user)

Lists can contain millions of items, so Python provides an
efficient way to loop through all the items in a list. When
you set up a loop, Python pulls each item from the list one
at a time and stores it in a temporary variable, which you
provide a name for. This name should be the singular
version of the list name.
 The indented block of code makes up the body of the
loop, where you can work with each individual item. Any
lines that are not indented run after the loop is completed.

Printing all items in a list

for user in users:
 print(user)

Printing a message for each item, and a separate
message afterwards

for user in users:
 print("Welcome, " + user + "!")

print("Welcome, we're glad to see you all!")

The len() function returns the number of items in a list.

Find the length of a list

num_users = len(users)
print("We have " + str(num_users) + " users.")

Individual elements in a list are accessed according to their
position, called the index. The index of the first element is
0, the index of the second element is 1, and so forth.
Negative indices refer to items at the end of the list. To get
a particular element, write the name of the list and then the
index of the element in square brackets.

Getting the first element

first_user = users[0]

Getting the second element

second_user = users[1]

Getting the last element

newest_user = users[-1]

Once you've defined a list, you can change individual
elements in the list. You do this by referring to the index of
the item you want to modify.

Changing an element

users[0] = 'valerie'
users[-2] = 'ronald'

You can use the range() function to work with a set of
numbers efficiently. The range() function starts at 0 by
default, and stops one number below the number passed to
it. You can use the list() function to efficiently generate a
large list of numbers.

Printing the numbers 0 to 1000

for number in range(1001):
 print(number)

Printing the numbers 1 to 1000

for number in range(1, 1001):
 print(number)

Making a list of numbers from 1 to a million

numbers = list(range(1, 1000001))

To copy a list make a slice that starts at the first item and
ends at the last item. If you try to copy a list without using
this approach, whatever you do to the copied list will affect
the original list as well.

Making a copy of a list

finishers = ['kai', 'abe', 'ada', 'gus', 'zoe']
copy_of_finishers = finishers[:]

More cheat sheets available at More cheat sheets available at

Readability counts

 Use four spaces per indentation level.

 Keep your lines to 79 characters or fewer.

 Use single blank lines to group parts of your
program visually.

There are a number of simple statistics you can run on a list
containing numerical data.

Finding the minimum value in a list

ages = [93, 99, 66, 17, 85, 1, 35, 82, 2, 77]
youngest = min(ages)

Finding the maximum value

ages = [93, 99, 66, 17, 85, 1, 35, 82, 2, 77]
oldest = max(ages)

Finding the sum of all values

ages = [93, 99, 66, 17, 85, 1, 35, 82, 2, 77]
total_years = sum(ages)

You can use a loop to generate a list based on a range of
numbers or on another list. This is a common operation, so
Python offers a more efficient way to do it. List
comprehensions may look complicated at first; if so, use the
for loop approach until you're ready to start using
comprehensions.
 To write a comprehension, define an expression for the
values you want to store in the list. Then write a for loop to
generate input values needed to make the list.

Using a loop to generate a list of square numbers

squares = []
for x in range(1, 11):
 square = x**2
 squares.append(square)

Using a comprehension to generate a list of square
numbers

squares = [x**2 for x in range(1, 11)]

Using a loop to convert a list of names to upper case

names = ['kai', 'abe', 'ada', 'gus', 'zoe']

upper_names = []
for name in names:
 upper_names.append(name.upper())

Using a comprehension to convert a list of names to
upper case

names = ['kai', 'abe', 'ada', 'gus', 'zoe']

upper_names = [name.upper() for name in names]

You can work with any set of elements from a list. A portion
of a list is called a slice. To slice a list start with the index of
the first item you want, then add a colon and the index after
the last item you want. Leave off the first index to start at
the beginning of the list, and leave off the last index to slice
through the end of the list.

Getting the first three items

finishers = ['kai', 'abe', 'ada', 'gus', 'zoe']
first_three = finishers[:3]

Getting the middle three items

middle_three = finishers[1:4]

Getting the last three items

last_three = finishers[-3:]

A tuple is like a list, except you can't change the values in a
tuple once it's defined. Tuples are good for storing
information that shouldn't be changed throughout the life of
a program. Tuples are designated by parentheses instead
of square brackets. (You can overwrite an entire tuple, but
you can't change the individual elements in a tuple.)

Defining a tuple

dimensions = (800, 600)

Looping through a tuple

for dimension in dimensions:
 print(dimension)

Overwriting a tuple

dimensions = (800, 600)
print(dimensions)

dimensions = (1200, 900)

When you're first learning about data structures such as
lists, it helps to visualize how Python is working with the
information in your program. pythontutor.com is a great tool
for seeing how Python keeps track of the information in a
list. Try running the following code on pythontutor.com, and
then run your own code.

Build a list and print the items in the list

dogs = []
dogs.append('willie')
dogs.append('hootz')
dogs.append('peso')
dogs.append('goblin')

for dog in dogs:
 print("Hello " + dog + "!")
print("I love these dogs!")

print("\nThese were my first two dogs:")
old_dogs = dogs[:2]
for old_dog in old_dogs:
 print(old_dog)

del dogs[0]
dogs.remove('peso')
print(dogs)

Use curly braces to define a dictionary. Use colons to
connect keys and values, and use commas to separate
individual key-value pairs.

Making a dictionary

alien_0 = {'color': 'green', 'points': 5}

Covers Python 3 and Python 2

You can loop through a dictionary in three ways: you can
loop through all the key-value pairs, all the keys, or all the
values.
 A dictionary only tracks the connections between keys
and values; it doesn't track the order of items in the
dictionary. If you want to process the information in order,
you can sort the keys in your loop.

Looping through all key-value pairs

Store people's favorite languages.
fav_languages = {
 'jen': 'python',
 'sarah': 'c',
 'edward': 'ruby',
 'phil': 'python',
 }

Show each person's favorite language.
for name, language in fav_languages.items():
 print(name + ": " + language)

Looping through all the keys

Show everyone who's taken the survey.
for name in fav_languages.keys():
 print(name)

Looping through all the values

Show all the languages that have been chosen.
for language in fav_languages.values():
 print(language)

Looping through all the keys in order

Show each person's favorite language,
in order by the person's name.
for name in sorted(fav_languages.keys()):
 print(name + ": " + language)

Python's dictionaries allow you to connect pieces of
related information. Each piece of information in a
dictionary is stored as a key-value pair. When you
provide a key, Python returns the value associated
with that key. You can loop through all the key-value
pairs, all the keys, or all the values.

To access the value associated with an individual key give
the name of the dictionary and then place the key in a set of
square brackets. If the key you're asking for is not in the
dictionary, an error will occur.
 You can also use the get() method, which returns None
instead of an error if the key doesn't exist. You can also
specify a default value to use if the key is not in the
dictionary.

Getting the value associated with a key

alien_0 = {'color': 'green', 'points': 5}

print(alien_0['color'])
print(alien_0['points'])

Getting the value with get()

alien_0 = {'color': 'green'}

alien_color = alien_0.get('color')
alien_points = alien_0.get('points', 0)

print(alien_color)
print(alien_points)

You can modify the value associated with any key in a
dictionary. To do so give the name of the dictionary and
enclose the key in square brackets, then provide the new
value for that key.

Modifying values in a dictionary

alien_0 = {'color': 'green', 'points': 5}
print(alien_0)

Change the alien's color and point value.
alien_0['color'] = 'yellow'
alien_0['points'] = 10
print(alien_0)

You can remove any key-value pair you want from a
dictionary. To do so use the del keyword and the dictionary
name, followed by the key in square brackets. This will
delete the key and its associated value.

Deleting a key-value pair

alien_0 = {'color': 'green', 'points': 5}
print(alien_0)

del alien_0['points']
print(alien_0)

You can store as many key-value pairs as you want in a
dictionary, until your computer runs out of memory. To add
a new key-value pair to an existing dictionary give the name
of the dictionary and the new key in square brackets, and
set it equal to the new value.
 This also allows you to start with an empty dictionary and
add key-value pairs as they become relevant.

Adding a key-value pair

alien_0 = {'color': 'green', 'points': 5}

alien_0['x'] = 0
alien_0['y'] = 25
alien_0['speed'] = 1.5

Adding to an empty dictionary

alien_0 = {}
alien_0['color'] = 'green'
alien_0['points'] = 5

Try running some of these examples on pythontutor.com.

You can find the number of key-value pairs in a dictionary.

Finding a dictionary's length

num_responses = len(fav_languages)

It's sometimes useful to store a set of dictionaries in a list;
this is called nesting.

Storing dictionaries in a list

Start with an empty list.
users = []

Make a new user, and add them to the list.
new_user = {
 'last': 'fermi',
 'first': 'enrico',
 'username': 'efermi',
 }
users.append(new_user)

Make another new user, and add them as well.
new_user = {
 'last': 'curie',
 'first': 'marie',
 'username': 'mcurie',
 }
users.append(new_user)

Show all information about each user.
for user_dict in users:
 for k, v in user_dict.items():
 print(k + ": " + v)
 print("\n")

You can also define a list of dictionaries directly,
without using append():

Define a list of users, where each user
is represented by a dictionary.
users = [
 {
 'last': 'fermi',
 'first': 'enrico',
 'username': 'efermi',
 },
 {
 'last': 'curie',
 'first': 'marie',
 'username': 'mcurie',
 },
]

Show all information about each user.
for user_dict in users:
 for k, v in user_dict.items():
 print(k + ": " + v)
 print("\n")

Storing a list inside a dictionary alows you to associate
more than one value with each key.

Storing lists in a dictionary

Store multiple languages for each person.
fav_languages = {
 'jen': ['python', 'ruby'],
 'sarah': ['c'],
 'edward': ['ruby', 'go'],
 'phil': ['python', 'haskell'],
}

Show all responses for each person.
for name, langs in fav_languages.items():
 print(name + ": ")
 for lang in langs:
 print("- " + lang)

More cheat sheets available at More cheat sheets available at

Standard Python dictionaries don't keep track of the order
in which keys and values are added; they only preserve the
association between each key and its value. If you want to
preserve the order in which keys and values are added, use
an OrderedDict.

Preserving the order of keys and values

from collections import OrderedDict

Store each person's languages, keeping
track of who respoded first.
fav_languages = OrderedDict()

fav_languages['jen'] = ['python', 'ruby']
fav_languages['sarah'] = ['c']
fav_languages['edward'] = ['ruby', 'go']
fav_languages['phil'] = ['python', 'haskell']

Display the results, in the same order they
were entered.
for name, langs in fav_languages.items():
 print(name + ":")
 for lang in langs:
 print("- " + lang)

You can store a dictionary inside another dictionary. In this
case each value associated with a key is itself a dictionary.

Storing dictionaries in a dictionary

users = {
 'aeinstein': {
 'first': 'albert',
 'last': 'einstein',
 'location': 'princeton',
 },
 'mcurie': {
 'first': 'marie',
 'last': 'curie',
 'location': 'paris',
 },
 }

for username, user_dict in users.items():
 print("\nUsername: " + username)
 full_name = user_dict['first'] + " "
 full_name += user_dict['last']
 location = user_dict['location']

 print("\tFull name: " + full_name.title())
 print("\tLocation: " + location.title())

Nesting is extremely useful in certain situations. However,
be aware of making your code overly complex. If you're
nesting items much deeper than what you see here there
are probably simpler ways of managing your data, such as
using classes.

You can use a loop to generate a large number of
dictionaries efficiently, if all the dictionaries start out with
similar data.

A million aliens

aliens = []

Make a million green aliens, worth 5 points
each. Have them all start in one row.
for alien_num in range(1000000):
 new_alien = {}
 new_alien['color'] = 'green'
 new_alien['points'] = 5
 new_alien['x'] = 20 * alien_num
 new_alien['y'] = 0
 aliens.append(new_alien)

Prove the list contains a million aliens.
num_aliens = len(aliens)

print("Number of aliens created:")
print(num_aliens)

A conditional test is an expression that can be evaluated as
True or False. Python uses the values True and False to
decide whether the code in an if statement should be
executed.

Checking for equality
A single equal sign assigns a value to a variable. A double equal
sign (==) checks whether two values are equal.

>>> car = 'bmw'
>>> car == 'bmw'
True
>>> car = 'audi'
>>> car == 'bmw'
False

Ignoring case when making a comparison

>>> car = 'Audi'
>>> car.lower() == 'audi'
True

Checking for inequality

>>> topping = 'mushrooms'
>>> topping != 'anchovies'
True

Testing numerical values is similar to testing string values.

Testing equality and inequality

>>> age = 18
>>> age == 18
True
>>> age != 18
False

Comparison operators

>>> age = 19
>>> age < 21
True
>>> age <= 21
True
>>> age > 21
False
>>> age >= 21
False

Covers Python 3 and Python 2

Several kinds of if statements exist. Your choice of which to
use depends on the number of conditions you need to test.
You can have as many elif blocks as you need, and the
else block is always optional.

Simple if statement

age = 19

if age >= 18:
 print("You're old enough to vote!")

If-else statements

age = 17

if age >= 18:
 print("You're old enough to vote!")
else:
 print("You can't vote yet.")

The if-elif-else chain

age = 12

if age < 4:
 price = 0
elif age < 18:
 price = 5
else:
 price = 10

print("Your cost is $" + str(price) + ".")

If statements allow you to examine the current state
of a program and respond appropriately to that state.
You can write a simple if statement that checks one
condition, or you can create a complex series of if
statements that idenitfy the exact conditions you're
looking for.

While loops run as long as certain conditions remain
true. You can use while loops to let your programs
run as long as your users want them to.

You can check multiple conditions at the same time. The
and operator returns True if all the conditions listed are
True. The or operator returns True if any condition is True.

Using and to check multiple conditions

>>> age_0 = 22
>>> age_1 = 18
>>> age_0 >= 21 and age_1 >= 21
False
>>> age_1 = 23
>>> age_0 >= 21 and age_1 >= 21
True

Using or to check multiple conditions

>>> age_0 = 22
>>> age_1 = 18
>>> age_0 >= 21 or age_1 >= 21
True
>>> age_0 = 18
>>> age_0 >= 21 or age_1 >= 21
False

A boolean value is either True or False. Variables with
boolean values are often used to keep track of certain
conditions within a program.

Simple boolean values

game_active = True
can_edit = False

You can easily test whether a certain value is in a list. You
can also test whether a list is empty before trying to loop
through the list.

Testing if a value is in a list

>>> players = ['al', 'bea', 'cyn', 'dale']
>>> 'al' in players
True
>>> 'eric' in players
False

Testing if a value is not in a list

banned_users = ['ann', 'chad', 'dee']
user = 'erin'

if user not in banned_users:
 print("You can play!")

Checking if a list is empty

players = []

if players:
 for player in players:
 print("Player: " + player.title())
else:
 print("We have no players yet!")

Letting the user choose when to quit

prompt = "\nTell me something, and I'll "
prompt += "repeat it back to you."
prompt += "\nEnter 'quit' to end the program. "

message = ""
while message != 'quit':
 message = input(prompt)

 if message != 'quit':
 print(message)

Using a flag

prompt = "\nTell me something, and I'll "
prompt += "repeat it back to you."
prompt += "\nEnter 'quit' to end the program. "

active = True
while active:
 message = input(prompt)

 if message == 'quit':
 active = False
 else:
 print(message)

Using break to exit a loop

prompt = "\nWhat cities have you visited?"
prompt += "\nEnter 'quit' when you're done. "

while True:
 city = input(prompt)

 if city == 'quit':
 break
 else:
 print("I've been to " + city + "!")

More cheat sheets available at More cheat sheets available at

Using continue in a loop

banned_users = ['eve', 'fred', 'gary', 'helen']

prompt = "\nAdd a player to your team."
prompt += "\nEnter 'quit' when you're done. "

players = []
while True:
 player = input(prompt)
 if player == 'quit':
 break
 elif player in banned_users:
 print(player + " is banned!")
 continue
 else:
 players.append(player)

print("\nYour team:")
for player in players:
 print(player)

You can allow your users to enter input using the input()
statement. In Python 3, all input is stored as a string.

Simple input

name = input("What's your name? ")
print("Hello, " + name + ".")

Accepting numerical input

age = input("How old are you? ")
age = int(age)

if age >= 18:
 print("\nYou can vote!")
else:
 print("\nYou can't vote yet.")

Accepting input in Python 2.7
Use raw_input() in Python 2.7. This function interprets all input as a
string, just as input() does in Python 3.

name = raw_input("What's your name? ")
print("Hello, " + name + ".")

A while loop repeats a block of code as long as a condition
is True.

Counting to 5

current_number = 1

while current_number <= 5:
 print(current_number)
 current_number += 1

Sublime Text doesn't run programs that prompt the user for
input. You can use Sublime Text to write programs that
prompt for input, but you'll need to run these programs from
a terminal.

Every while loop needs a way to stop running so it won't
continue to run forever. If there's no way for the condition to
become False, the loop will never stop running.

An infinite loop

while True:
 name = input("\nWho are you? ")
 print("Nice to meet you, " + name + "!")

The remove() method removes a specific value from a list,
but it only removes the first instance of the value you
provide. You can use a while loop to remove all instances
of a particular value.

Removing all cats from a list of pets

pets = ['dog', 'cat', 'dog', 'fish', 'cat',
 'rabbit', 'cat']
print(pets)

while 'cat' in pets:
 pets.remove('cat')

print(pets)

You can use the break statement and the continue
statement with any of Python's loops. For example you can
use break to quit a for loop that's working through a list or a
dictionary. You can use continue to skip over certain items
when looping through a list or dictionary as well.

The first line of a function is its definition, marked by the
keyword def. The name of the function is followed by a set
of parentheses and a colon. A docstring, in triple quotes,
describes what the function does. The body of a function is
indented one level.
 To call a function, give the name of the function followed
by a set of parentheses.

Making a function

def greet_user():
 """Display a simple greeting."""
 print("Hello!")

greet_user()

The two main kinds of arguments are positional and
keyword arguments. When you use positional arguments
Python matches the first argument in the function call with
the first parameter in the function definition, and so forth.
 With keyword arguments, you specify which parameter
each argument should be assigned to in the function call.
When you use keyword arguments, the order of the
arguments doesn't matter.

Using positional arguments

def describe_pet(animal, name):
 """Display information about a pet."""
 print("\nI have a " + animal + ".")
 print("Its name is " + name + ".")

describe_pet('hamster', 'harry')
describe_pet('dog', 'willie')

Using keyword arguments

def describe_pet(animal, name):
 """Display information about a pet."""
 print("\nI have a " + animal + ".")
 print("Its name is " + name + ".")

describe_pet(animal='hamster', name='harry')
describe_pet(name='willie', animal='dog')

Covers Python 3 and Python 2

A function can return a value or a set of values. When a
function returns a value, the calling line must provide a
variable in which to store the return value. A function stops
running when it reaches a return statement.

Returning a single value

def get_full_name(first, last):
 """Return a neatly formatted full name."""
 full_name = first + ' ' + last
 return full_name.title()

musician = get_full_name('jimi', 'hendrix')
print(musician)

Returning a dictionary

def build_person(first, last):
 """Return a dictionary of information
 about a person.
 """
 person = {'first': first, 'last': last}
 return person

musician = build_person('jimi', 'hendrix')
print(musician)

Returning a dictionary with optional values

def build_person(first, last, age=None):
 """Return a dictionary of information
 about a person.
 """
 person = {'first': first, 'last': last}
 if age:
 person['age'] = age
 return person

musician = build_person('jimi', 'hendrix', 27)
print(musician)

musician = build_person('janis', 'joplin')
print(musician)

Functions are named blocks of code designed to do
one specific job. Functions allow you to write code
once that can then be run whenever you need to
accomplish the same task. Functions can take in the
information they need, and return the information they
generate. Using functions effectively makes your
programs easier to write, read, test, and fix.

You can provide a default value for a parameter. When
function calls omit this argument the default value will be
used. Parameters with default values must be listed after
parameters without default values in the function's definition
so positional arguments can still work correctly.

Using a default value

def describe_pet(name, animal='dog'):
 """Display information about a pet."""
 print("\nI have a " + animal + ".")
 print("Its name is " + name + ".")

describe_pet('harry', 'hamster')
describe_pet('willie')

Using None to make an argument optional

def describe_pet(animal, name=None):
 """Display information about a pet."""
 print("\nI have a " + animal + ".")
 if name:
 print("Its name is " + name + ".")

describe_pet('hamster', 'harry')
describe_pet('snake')

Information that's passed to a function is called an
argument; information that's received by a function is called
a parameter. Arguments are included in parentheses after
the function's name, and parameters are listed in
parentheses in the function's definition.

Passing a single argument

def greet_user(username):
 """Display a simple greeting."""
 print("Hello, " + username + "!")

greet_user('jesse')
greet_user('diana')
greet_user('brandon')

Try running some of these examples on pythontutor.com.

You can pass a list as an argument to a function, and the
function can work with the values in the list. Any changes
the function makes to the list will affect the original list. You
can prevent a function from modifying a list by passing a
copy of the list as an argument.

Passing a list as an argument

def greet_users(names):
 """Print a simple greeting to everyone."""
 for name in names:
 msg = "Hello, " + name + "!"
 print(msg)

usernames = ['hannah', 'ty', 'margot']
greet_users(usernames)

Allowing a function to modify a list
The following example sends a list of models to a function for
printing. The original list is emptied, and the second list is filled.

def print_models(unprinted, printed):
 """3d print a set of models."""
 while unprinted:
 current_model = unprinted.pop()
 print("Printing " + current_model)
 printed.append(current_model)

Store some unprinted designs,
and print each of them.
unprinted = ['phone case', 'pendant', 'ring']
printed = []
print_models(unprinted, printed)

print("\nUnprinted:", unprinted)
print("Printed:", printed)

Preventing a function from modifying a list
The following example is the same as the previous one, except the
original list is unchanged after calling print_models().

def print_models(unprinted, printed):
 """3d print a set of models."""
 while unprinted:
 current_model = unprinted.pop()
 print("Printing " + current_model)
 printed.append(current_model)

Store some unprinted designs,
and print each of them.
original = ['phone case', 'pendant', 'ring']
printed = []

print_models(original[:], printed)
print("\nOriginal:", original)
print("Printed:", printed)

Sometimes you won't know how many arguments a
function will need to accept. Python allows you to collect an
arbitrary number of arguments into one parameter using the
* operator. A parameter that accepts an arbitrary number of
arguments must come last in the function definition.
 The ** operator allows a parameter to collect an arbitrary
number of keyword arguments.

Collecting an arbitrary number of arguments

def make_pizza(size, *toppings):
 """Make a pizza."""
 print("\nMaking a " + size + " pizza.")
 print("Toppings:")
 for topping in toppings:
 print("- " + topping)

Make three pizzas with different toppings.
make_pizza('small', 'pepperoni')
make_pizza('large', 'bacon bits', 'pineapple')
make_pizza('medium', 'mushrooms', 'peppers',
 'onions', 'extra cheese')

Collecting an arbitrary number of keyword arguments

def build_profile(first, last, **user_info):
 """Build a user's profile dictionary."""
 # Build a dict with the required keys.
 profile = {'first': first, 'last': last}

 # Add any other keys and values.
 for key, value in user_info.items():
 profile[key] = value

 return profile

Create two users with different kinds
of information.
user_0 = build_profile('albert', 'einstein',
 location='princeton')
user_1 = build_profile('marie', 'curie',
 location='paris', field='chemistry')

print(user_0)
print(user_1)

More cheat sheets available at More cheat sheets available at

You can store your functions in a separate file called a
module, and then import the functions you need into the file
containing your main program. This allows for cleaner
program files. (Make sure your module is stored in the
same directory as your main program.)

Storing a function in a module
File: pizza.py

def make_pizza(size, *toppings):
 """Make a pizza."""
 print("\nMaking a " + size + " pizza.")
 print("Toppings:")
 for topping in toppings:
 print("- " + topping)

Importing an entire module
File: making_pizzas.py
Every function in the module is available in the program file.

import pizza

pizza.make_pizza('medium', 'pepperoni')
pizza.make_pizza('small', 'bacon', 'pineapple')

Importing a specific function
Only the imported functions are available in the program file.

from pizza import make_pizza

make_pizza('medium', 'pepperoni')
make_pizza('small', 'bacon', 'pineapple')

Giving a module an alias

import pizza as p

p.make_pizza('medium', 'pepperoni')
p.make_pizza('small', 'bacon', 'pineapple')

Giving a function an alias

from pizza import make_pizza as mp

mp('medium', 'pepperoni')
mp('small', 'bacon', 'pineapple')

Importing all functions from a module
Don't do this, but recognize it when you see it in others' code. It
can result in naming conflicts, which can cause errors.

from pizza import *

make_pizza('medium', 'pepperoni')
make_pizza('small', 'bacon', 'pineapple')

As you can see there are many ways to write and call a
function. When you're starting out, aim for something that
simply works. As you gain experience you'll develop an
understanding of the more subtle advantages of different
structures such as positional and keyword arguments, and
the various approaches to importing functions. For now if
your functions do what you need them to, you're doing well.

Classes are the foundation of object-oriented
programming. Classes represent real-world things
you want to model in your programs: for example
dogs, cars, and robots. You use a class to make
objects, which are specific instances of dogs, cars,
and robots. A class defines the general behavior that
a whole category of objects can have, and the
information that can be associated with those objects.
 Classes can inherit from each other – you can
write a class that extends the functionality of an
existing class. This allows you to code efficiently for a
wide variety of situations.

Creating an object from a class

my_car = Car('audi', 'a4', 2016)

Accessing attribute values

print(my_car.make)
print(my_car.model)
print(my_car.year)

Calling methods

my_car.fill_tank()
my_car.drive()

Creating multiple objects

my_car = Car('audi', 'a4', 2016)
my_old_car = Car('subaru', 'outback', 2013)
my_truck = Car('toyota', 'tacoma', 2010)

Covers Python 3 and Python 2

Consider how we might model a car. What information
would we associate with a car, and what behavior would it
have? The information is stored in variables called
attributes, and the behavior is represented by functions.
Functions that are part of a class are called methods.

The Car class

class Car():
 """A simple attempt to model a car."""

 def __init__(self, make, model, year):
 """Initialize car attributes."""
 self.make = make
 self.model = model
 self.year = year

 # Fuel capacity and level in gallons.
 self.fuel_capacity = 15
 self.fuel_level = 0

 def fill_tank(self):
 """Fill gas tank to capacity."""
 self.fuel_level = self.fuel_capacity
 print("Fuel tank is full.")

 def drive(self):
 """Simulate driving."""
 print("The car is moving.")

You can modify an attribute's value directly, or you can
write methods that manage updating values more carefully.

Modifying an attribute directly

my_new_car = Car('audi', 'a4', 2016)
my_new_car.fuel_level = 5

Writing a method to update an attribute's value

def update_fuel_level(self, new_level):
 """Update the fuel level."""
 if new_level <= self.fuel_capacity:
 self.fuel_level = new_level
 else:
 print("The tank can't hold that much!")

Writing a method to increment an attribute's value

def add_fuel(self, amount):
 """Add fuel to the tank."""
 if (self.fuel_level + amount
 <= self.fuel_capacity):
 self.fuel_level += amount
 print("Added fuel.")
 else:
 print("The tank won't hold that much.")

If the class you're writing is a specialized version of another
class, you can use inheritance. When one class inherits
from another, it automatically takes on all the attributes and
methods of the parent class. The child class is free to
introduce new attributes and methods, and override
attributes and methods of the parent class.
 To inherit from another class include the name of the
parent class in parentheses when defining the new class.

The __init__() method for a child class

class ElectricCar(Car):
 """A simple model of an electric car."""

 def __init__(self, make, model, year):
 """Initialize an electric car."""
 super().__init__(make, model, year)

 # Attributes specific to electric cars.
 # Battery capacity in kWh.
 self.battery_size = 70
 # Charge level in %.
 self.charge_level = 0

Adding new methods to the child class

class ElectricCar(Car):
 --snip--
 def charge(self):
 """Fully charge the vehicle."""
 self.charge_level = 100
 print("The vehicle is fully charged.")

Using child methods and parent methods

my_ecar = ElectricCar('tesla', 'model s', 2016)

my_ecar.charge()
my_ecar.drive()

In Python class names are written in CamelCase and object
names are written in lowercase with underscores. Modules
that contain classes should still be named in lowercase with
underscores.

There are many ways to model real world objects and
situations in code, and sometimes that variety can feel
overwhelming. Pick an approach and try it – if your first
attempt doesn't work, try a different approach.

Overriding parent methods

class ElectricCar(Car):
 --snip--
 def fill_tank(self):
 """Display an error message."""
 print("This car has no fuel tank!")

More cheat sheets available at More cheat sheets available at

Classes should inherit from object

class ClassName(object):

The Car class in Python 2.7

class Car(object):

Child class __init__() method is different

class ChildClassName(ParentClass):
 def __init__(self):
 super(ClassName, self).__init__()

The ElectricCar class in Python 2.7

class ElectricCar(Car):
 def __init__(self, make, model, year):
 super(ElectricCar, self).__init__(
 make, model, year)

A list can hold as many items as you want, so you can
make a large number of objects from a class and store
them in a list.
 Here's an example showing how to make a fleet of rental
cars, and make sure all the cars are ready to drive.

A fleet of rental cars

from car import Car, ElectricCar

Make lists to hold a fleet of cars.
gas_fleet = []
electric_fleet = []

Make 500 gas cars and 250 electric cars.
for _ in range(500):
 car = Car('ford', 'focus', 2016)
 gas_fleet.append(car)
for _ in range(250):
 ecar = ElectricCar('nissan', 'leaf', 2016)
 electric_fleet.append(ecar)

Fill the gas cars, and charge electric cars.
for car in gas_fleet:
 car.fill_tank()
for ecar in electric_fleet:
 ecar.charge()

print("Gas cars:", len(gas_fleet))
print("Electric cars:", len(electric_fleet))

A class can have objects as attributes. This allows classes
to work together to model complex situations.

A Battery class

class Battery():
 """A battery for an electric car."""

 def __init__(self, size=70):
 """Initialize battery attributes."""
 # Capacity in kWh, charge level in %.
 self.size = size
 self.charge_level = 0

 def get_range(self):
 """Return the battery's range."""
 if self.size == 70:
 return 240
 elif self.size == 85:
 return 270

Using an instance as an attribute

class ElectricCar(Car):
 --snip--

 def __init__(self, make, model, year):
 """Initialize an electric car."""
 super().__init__(make, model, year)

 # Attribute specific to electric cars.
 self.battery = Battery()

 def charge(self):
 """Fully charge the vehicle."""
 self.battery.charge_level = 100
 print("The vehicle is fully charged.")

Using the instance

my_ecar = ElectricCar('tesla', 'model x', 2016)

my_ecar.charge()
print(my_ecar.battery.get_range())
my_ecar.drive()

Class files can get long as you add detailed information and
functionality. To help keep your program files uncluttered,
you can store your classes in modules and import the
classes you need into your main program.

Storing classes in a file
car.py

"""Represent gas and electric cars."""

class Car():
 """A simple attempt to model a car."""
 --snip—

class Battery():
 """A battery for an electric car."""
 --snip--

class ElectricCar(Car):
 """A simple model of an electric car."""
 --snip--

Importing individual classes from a module
my_cars.py

from car import Car, ElectricCar

my_beetle = Car('volkswagen', 'beetle', 2016)
my_beetle.fill_tank()
my_beetle.drive()

my_tesla = ElectricCar('tesla', 'model s',
2016)
my_tesla.charge()
my_tesla.drive()

Importing an entire module

import car

my_beetle = car.Car(
 'volkswagen', 'beetle', 2016)
my_beetle.fill_tank()
my_beetle.drive()

my_tesla = car.ElectricCar(
 'tesla', 'model s', 2016)
my_tesla.charge()
my_tesla.drive()

Importing all classes from a module
(Don’t do this, but recognize it when you see it.)

from car import *

my_beetle = Car('volkswagen', 'beetle', 2016)

Covers Python 3 and Python 2

Opening a file using an absolute path

f_path = "/home/ehmatthes/books/alice.txt"

with open(f_path) as f_obj:
 lines = f_obj.readlines()

Opening a file on Windows
Windows will sometimes interpret forward slashes incorrectly. If
you run into this, use backslashes in your file paths.

f_path = "C:\Users\ehmatthes\books\alice.txt"

with open(f_path) as f_obj:
 lines = f_obj.readlines()

Your programs can read information in from files, and
they can write data to files. Reading from files allows
you to work with a wide variety of information; writing
to files allows users to pick up where they left off the
next time they run your program. You can write text to
files, and you can store Python structures such as
lists in data files.

Exceptions are special objects that help your
programs respond to errors in appropriate ways. For
example if your program tries to open a file that
doesn’t exist, you can use exceptions to display an
informative error message instead of having the
program crash.

To read from a file your program needs to open the file and
then read the contents of the file. You can read the entire
contents of the file at once, or read the file line by line. The
with statement makes sure the file is closed properly when
the program has finished accessing the file.

Reading an entire file at once

filename = 'siddhartha.txt'

with open(filename) as f_obj:
 contents = f_obj.read()

print(contents)

Reading line by line
Each line that's read from the file has a newline character at the
end of the line, and the print function adds its own newline
character. The rstrip() method gets rid of the the extra blank lines
this would result in when printing to the terminal.

filename = 'siddhartha.txt'

with open(filename) as f_obj:
 for line in f_obj:
 print(line.rstrip())

Storing the lines in a list

filename = 'siddhartha.txt'

with open(filename) as f_obj:
 lines = f_obj.readlines()

for line in lines:
 print(line.rstrip())

Passing the 'w' argument to open() tells Python you want to
write to the file. Be careful; this will erase the contents of
the file if it already exists. Passing the 'a' argument tells
Python you want to append to the end of an existing file.

Writing to an empty file

filename = 'programming.txt'

with open(filename, 'w') as f:
 f.write("I love programming!")

Writing multiple lines to an empty file

filename = 'programming.txt'

with open(filename, 'w') as f:
 f.write("I love programming!\n")
 f.write("I love creating new games.\n")

Appending to a file

filename = 'programming.txt'

with open(filename, 'a') as f:
 f.write("I also love working with data.\n")
 f.write("I love making apps as well.\n")

When Python runs the open() function, it looks for the file in
the same directory where the program that's being excuted
is stored. You can open a file from a subfolder using a
relative path. You can also use an absolute path to open
any file on your system.

Opening a file from a subfolder

f_path = "text_files/alice.txt"

with open(f_path) as f_obj:
 lines = f_obj.readlines()

for line in lines:
 print(line.rstrip())

When you think an error may occur, you can write a try-
except block to handle the exception that might be raised.
The try block tells Python to try running some code, and the
except block tells Python what to do if the code results in a
particular kind of error.

Handling the ZeroDivisionError exception

try:
 print(5/0)
except ZeroDivisionError:
 print("You can't divide by zero!")

Handling the FileNotFoundError exception

f_name = 'siddhartha.txt'

try:
 with open(f_name) as f_obj:
 lines = f_obj.readlines()
except FileNotFoundError:
 msg = "Can't find file {0}.".format(f_name)
 print(msg)

It can be hard to know what kind of exception to handle
when writing code. Try writing your code without a try block,
and make it generate an error. The traceback will tell you
what kind of exception your program needs to handle.

The try block should only contain code that may cause an
error. Any code that depends on the try block running
successfully should be placed in the else block.

Using an else block

print("Enter two numbers. I'll divide them.")

x = input("First number: ")
y = input("Second number: ")

try:
 result = int(x) / int(y)
except ZeroDivisionError:
 print("You can't divide by zero!")
else:
 print(result)

Preventing crashes from user input
Without the except block in the following example, the program
would crash if the user tries to divide by zero. As written, it will
handle the error gracefully and keep running.

"""A simple calculator for division only."""

print("Enter two numbers. I'll divide them.")
print("Enter 'q' to quit.")

while True:
 x = input("\nFirst number: ")
 if x == 'q':
 break
 y = input("Second number: ")
 if y == 'q':
 break

 try:
 result = int(x) / int(y)
 except ZeroDivisionError:
 print("You can't divide by zero!")
 else:
 print(result)

Sometimes you want your program to just continue running
when it encounters an error, without reporting the error to
the user. Using the pass statement in an else block allows
you to do this.

Using the pass statement in an else block

f_names = ['alice.txt', 'siddhartha.txt',
 'moby_dick.txt', 'little_women.txt']

for f_name in f_names:
 # Report the length of each file found.
 try:
 with open(f_name) as f_obj:
 lines = f_obj.readlines()
 except FileNotFoundError:
 # Just move on to the next file.
 pass
 else:
 num_lines = len(lines)
 msg = "{0} has {1} lines.".format(
 f_name, num_lines)
 print(msg)

More cheat sheets available at

The json module allows you to dump simple Python data
structures into a file, and load the data from that file the
next time the program runs. The JSON data format is not
specific to Python, so you can share this kind of data with
people who work in other languages as well.

Knowing how to manage exceptions is important when
working with stored data. You'll usually want to make sure
the data you're trying to load exists before working with it.

Using json.dump() to store data

"""Store some numbers."""

import json

numbers = [2, 3, 5, 7, 11, 13]

filename = 'numbers.json'
with open(filename, 'w') as f_obj:
 json.dump(numbers, f_obj)

Using json.load() to read data

"""Load some previously stored numbers."""

import json

filename = 'numbers.json'
with open(filename) as f_obj:
 numbers = json.load(f_obj)

print(numbers)

Making sure the stored data exists

import json

f_name = 'numbers.json'

try:
 with open(f_name) as f_obj:
 numbers = json.load(f_obj)
except FileNotFoundError:
 msg = "Can’t find {0}.".format(f_name)
 print(msg)
else:
 print(numbers)

Exception-handling code should catch specific exceptions
that you expect to happen during your program's execution.
A bare except block will catch all exceptions, including
keyboard interrupts and system exits you might need when
forcing a program to close.

If you want to use a try block and you're not sure which
exception to catch, use Exception. It will catch most
exceptions, but still allow you to interrupt programs
intentionally.

Don’t use bare except blocks

try:
 # Do something
except:
 pass

Use Exception instead

try:
 # Do something
except Exception:
 pass

Printing the exception

try:
 # Do something
except Exception as e:
 print(e, type(e))

Well-written, properly tested code is not very prone to
internal errors such as syntax or logical errors. But every
time your program depends on something external such as
user input or the existence of a file, there's a possibility of
an exception being raised.

It's up to you how to communicate errors to your users.
Sometimes users need to know if a file is missing;
sometimes it's better to handle the error silently. A little
experience will help you know how much to report.

Practice with exceptions
Take a program you've already written that prompts for user
input, and add some error-handling code to the program.

Covers Python 3 and Python 2

Running the test
When you change your code, it’s important to run your existing
tests. This will tell you whether the changes you made affected
existing behavior.

E
==
ERROR: test_first_last (__main__.NamesTestCase)
Test names like Janis Joplin.
--
Traceback (most recent call last):
 File "test_full_names.py", line 10,
 in test_first_last
 'joplin')
TypeError: get_full_name() missing 1 required
 positional argument: 'last'

--
Ran 1 test in 0.001s

FAILED (errors=1)

Fixing the code
When a test fails, the code needs to be modified until the test
passes again. (Don’t make the mistake of rewriting your tests to fit
your new code.) Here we can make the middle name optional.

def get_full_name(first, last, middle=''):
 """Return a full name."""
 if middle:
 full_name = "{0} {1} {2}".format(first,
 middle, last)
 else:
 full_name = "{0} {1}".format(first,
 last)
 return full_name.title()

Running the test
Now the test should pass again, which means our original
functionality is still intact.

.

Ran 1 test in 0.000s

OK

When you write a function or a class, you can also
write tests for that code. Testing proves that your
code works as it's supposed to in the situations it's
designed to handle, and also when people use your
programs in unexpected ways. Writing tests gives
you confidence that your code will work correctly as
more people begin to use your programs. You can
also add new features to your programs and know
that you haven't broken existing behavior.

A unit test verifies that one specific aspect of your
code works as it's supposed to. A test case is a
collection of unit tests which verify your code's
behavior in a wide variety of situations.

Python's unittest module provides tools for testing your
code. To try it out, we’ll create a function that returns a full
name. We’ll use the function in a regular program, and then
build a test case for the function.

A function to test
Save this as full_names.py

def get_full_name(first, last):
 """Return a full name."""
 full_name = "{0} {1}".format(first, last)
 return full_name.title()

Using the function
Save this as names.py

from full_names import get_full_name

janis = get_full_name('janis', 'joplin')
print(janis)

bob = get_full_name('bob', 'dylan')
print(bob)

Building a testcase with one unit test
To build a test case, make a class that inherits from
unittest.TestCase and write methods that begin with test_.

Save this as test_full_names.py

import unittest
from full_names import get_full_name

class NamesTestCase(unittest.TestCase):
 """Tests for names.py."""

 def test_first_last(self):
 """Test names like Janis Joplin."""
 full_name = get_full_name('janis',
 'joplin')
 self.assertEqual(full_name,
 'Janis Joplin')

unittest.main()

Running the test
Python reports on each unit test in the test case. The dot reports a
single passing test. Python informs us that it ran 1 test in less than
0.001 seconds, and the OK lets us know that all unit tests in the
test case passed.

.

Ran 1 test in 0.000s

OK

Failing tests are important; they tell you that a change in the
code has affected existing behavior. When a test fails, you
need to modify the code so the existing behavior still works.

Modifying the function
We’ll modify get_full_name() so it handles middle names, but
we’ll do it in a way that breaks existing behavior.

def get_full_name(first, middle, last):
 """Return a full name."""
 full_name = "{0} {1} {2}".format(first,
 middle, last)
 return full_name.title()

Using the function

from full_names import get_full_name

john = get_full_name('john', 'lee', 'hooker')
print(john)

david = get_full_name('david', 'lee', 'roth')
print(david)

You can add as many unit tests to a test case as you need.
To write a new test, add a new method to your test case
class.

Testing middle names
We’ve shown that get_full_name() works for first and last

names. Let’s test that it works for middle names as well.

import unittest
from full_names import get_full_name

class NamesTestCase(unittest.TestCase):
 """Tests for names.py."""

 def test_first_last(self):
 """Test names like Janis Joplin."""
 full_name = get_full_name('janis',
 'joplin')
 self.assertEqual(full_name,
 'Janis Joplin')

 def test_middle(self):
 """Test names like David Lee Roth."""
 full_name = get_full_name('david',
 'roth', 'lee')
 self.assertEqual(full_name,
 'David Lee Roth')

unittest.main()

Running the tests
The two dots represent two passing tests.

..

Ran 2 tests in 0.000s

OK

Testing a class is similar to testing a function, since you’ll
mostly be testing your methods.

A class to test
Save as accountant.py

class Accountant():
 """Manage a bank account."""

 def __init__(self, balance=0):
 self.balance = balance

 def deposit(self, amount):
 self.balance += amount

 def withdraw(self, amount):
 self.balance -= amount

Building a testcase
For the first test, we’ll make sure we can start out with different
initial balances. Save this as test_accountant.py.

import unittest
from accountant import Accountant

class TestAccountant(unittest.TestCase):
 """Tests for the class Accountant."""

 def test_initial_balance(self):
 # Default balance should be 0.
 acc = Accountant()
 self.assertEqual(acc.balance, 0)

 # Test non-default balance.
 acc = Accountant(100)
 self.assertEqual(acc.balance, 100)

unittest.main()

Running the test

.

Ran 1 test in 0.000s

OK

More cheat sheets available at

When testing a class, you usually have to make an instance
of the class. The setUp() method is run before every test.

Any instances you make in setUp() are available in every

test you write.

Using setUp() to support multiple tests

The instance self.acc can be used in each new test.

import unittest
from accountant import Accountant

class TestAccountant(unittest.TestCase):
 """Tests for the class Accountant."""

 def setUp(self):
 self.acc = Accountant()

 def test_initial_balance(self):
 # Default balance should be 0.
 self.assertEqual(self.acc.balance, 0)

 # Test non-default balance.
 acc = Accountant(100)
 self.assertEqual(acc.balance, 100)

 def test_deposit(self):
 # Test single deposit.
 self.acc.deposit(100)
 self.assertEqual(self.acc.balance, 100)

 # Test multiple deposits.
 self.acc.deposit(100)
 self.acc.deposit(100)
 self.assertEqual(self.acc.balance, 300)

 def test_withdrawal(self):
 # Test single withdrawal.
 self.acc.deposit(1000)
 self.acc.withdraw(100)
 self.assertEqual(self.acc.balance, 900)

unittest.main()

Running the tests

...

Ran 3 tests in 0.001s

OK

In general you shouldn’t modify a test once it’s written.
When a test fails it usually means new code you’ve written
has broken existing functionality, and you need to modify
the new code until all existing tests pass.
 If your original requirements have changed, it may be
appropriate to modify some tests. This usually happens in
the early stages of a project when desired behavior is still
being sorted out.

Python provides a number of assert methods you can use
to test your code.

Verify that a==b, or a != b

assertEqual(a, b)
assertNotEqual(a, b)

Verify that x is True, or x is False

assertTrue(x)
assertFalse(x)

Verify an item is in a list, or not in a list

assertIn(item, list)
assertNotIn(item, list)

Covers Python 3 and Python 2

Useful rect attributes
Once you have a rect object, there are a number of attributes that
are useful when positioning objects and detecting relative positions
of objects. (You can find more attributes in the Pygame
documentation.)

Individual x and y values:
screen_rect.left, screen_rect.right
screen_rect.top, screen_rect.bottom
screen_rect.centerx, screen_rect.centery
screen_rect.width, screen_rect.height

Tuples
screen_rect.center
screen_rect.size

Creating a rect object
You can create a rect object from scratch. For example a small rect
object that’s filled in can represent a bullet in a game. The Rect()
class takes the coordinates of the upper left corner, and the width
and height of the rect. The draw.rect() function takes a screen
object, a color, and a rect. This function fills the given rect with the
given color.

bullet_rect = pg.Rect(100, 100, 3, 15)
color = (100, 100, 100)
pg.draw.rect(screen, color, bullet_rect)

Pygame is a framework for making games using
Python. Making games is fun, and it’s a great way to
expand your programming skills and knowledge.
Pygame takes care of many of the lower-level tasks
in building games, which lets you focus on the
aspects of your game that make it interesting.

Pygame runs on all systems, but setup is slightly different
on each OS. The instructions here assume you’re using
Python 3, and provide a minimal installation of Pygame. If
these instructions don’t work for your system, see the more
detailed notes at http://ehmatthes.github.io/pcc/.

Pygame on Linux

$ sudo apt-get install python3-dev mercurial
 libsdl-image1.2-dev libsdl2-dev
 libsdl-ttf2.0-dev
$ pip install --user
 hg+http://bitbucket.org/pygame/pygame

Pygame on OS X
This assumes you’ve used Homebrew to install Python 3.

$ brew install hg sdl sdl_image sdl_ttf
$ pip install --user
 hg+http://bitbucket.org/pygame/pygame

Pygame on Windows
Find an installer at
https://bitbucket.org/pygame/pygame/downloads/ or
http://www.lfd.uci.edu/~gohlke/pythonlibs/#pygame that matches
your version of Python. Run the installer file if it’s a .exe or .msi file.
If it’s a .whl file, use pip to install Pygame:

> python –m pip install --user
 pygame-1.9.2a0-cp35-none-win32.whl

Testing your installation
To test your installation, open a terminal session and try to import
Pygame. If you don’t get any error messages, your installation was
successful.

$ python
>>> import pygame
>>>

The following code sets up an empty game window, and
starts an event loop and a loop that continually refreshes
the screen.

An empty game window

import sys
import pygame as pg

def run_game():
 # Initialize and set up screen.
 pg.init()
 screen = pg.display.set_mode((1200, 800))
 pg.display.set_caption("Alien Invasion")

 # Start main loop.
 while True:
 # Start event loop.
 for event in pg.event.get():
 if event.type == pg.QUIT:
 sys.exit()

 # Refresh screen.
 pg.display.flip()

run_game()

Setting a custom window size
The display.set_mode() function accepts a tuple that defines the
screen size.

screen_dim = (1200, 800)
screen = pg.display.set_mode(screen_dim)

Setting a custom background color
Colors are defined as a tuple of red, green, and blue values. Each
value ranges from 0-255.

bg_color = (230, 230, 230)
screen.fill(bg_color)

Many objects in a game can be treated as simple
rectangles, rather than their actual shape. This simplifies
code without noticeably affecting game play. Pygame has a
rect object that makes it easy to work with game objects.

Getting the screen rect object
We already have a screen object; we can easily access the rect
object associated with the screen.

screen_rect = screen.get_rect()

Finding the center of the screen
Rect objects have a center attribute which stores the center point.

screen_center = screen_rect.center

Many objects in a game are images that are moved around
the screen. It’s easiest to use bitmap (.bmp) image files, but
you can also configure your system to work with jpg, png,
and gif files as well.

Loading an image

ship = pg.image.load('images/ship.bmp')

Getting the rect object from an image

ship_rect = ship.get_rect()

Positioning an image
With rects, it’s easy to position an image wherever you want on the
screen, or in relation to another object. The following code
positions a ship object at the bottom center of the screen.

ship_rect.midbottom = screen_rect.midbottom

Drawing an image to the screen
Once an image is loaded and positioned, you can draw it to the
screen with the blit() method. The blit() method acts on the screen
object, and takes the image object and image rect as arguments.

Draw ship to screen.
screen.blit(ship, ship_rect)

The blitme() method
Game objects such as ships are often written as classes. Then a
blitme() method is usually defined, which draws the object to the
screen.

def blitme(self):
 """Draw ship at current location."""
 self.screen.blit(self.image, self.rect)

Pygame’s event loop registers an event any time the
mouse moves, or a mouse button is pressed or released.

Responding to the mouse button

for event in pg.event.get():
 if event.type == pg.MOUSEBUTTONDOWN:
 ship.fire_bullet()

Finding the mouse position
The mouse position is returned as a tuple.

mouse_pos = pg.mouse.get_pos()

Clicking a button
You might want to know if the cursor is over an object such as a
button. The rect.collidepoint() method returns true when a point is
inside a rect object.

if button_rect.collidepoint(mouse_pos):
 start_game()

Hiding the mouse

pg.mouse.set_visible(False)

More cheat sheets available at

Removing an item from a group
It’s important to delete elements that will never appear again in the
game, so you don’t waste memory and resources.

bullets.remove(bullet)

Pygame watches for events such as key presses and
mouse actions. You can detect any event you care about in
the event loop, and respond with any action that’s
appropriate for your game.

Responding to key presses
Pygame’s main event loop registers a KEYDOWN event any time a
key is pressed. When this happens, you can check for specific
keys.

for event in pg.event.get():
 if event.type == pg.KEYDOWN:
 if event.key == pg.K_RIGHT:
 ship_rect.x += 1
 elif event.key == pg.K_LEFT:
 ship_rect.x -= 1
 elif event.key == pg.K_SPACE:
 ship.fire_bullet()
 elif event.key == pg.K_q:
 sys.exit()

Responding to released keys
When the user releases a key, a KEYUP event is triggered.

if event.type == pg.KEYUP:
 if event.key == pg.K_RIGHT:
 ship.moving_right = False

Pygame has a Group class which makes working with a
group of similar objects easier. A group is like a list, with
some extra functionality that’s helpful when building games.

Making and filling a group
An object that will be placed in a group must inherit from Sprite.

from pygame.sprite import Sprite, Group

def Bullet(Sprite):
 ...
 def draw_bullet(self):
 ...
 def update(self):
 ...

bullets = Group()

new_bullet = Bullet()
bullets.add(new_bullet)

Looping through the items in a group
The sprites() method returns all the members of a group.

for bullet in bullets.sprites():
 bullet.draw_bullet()

Calling update() on a group
Calling update() on a group automatically calls update() on each
member of the group.

bullets.update()

You can detect when a single object collides with any
member of a group. You can also detect when any member
of one group collides with a member of another group.

Collisions between a single object and a group
The spritecollideany() function takes an object and a group, and
returns True if the object overlaps with any member of the group.

if pg.sprite.spritecollideany(ship, aliens):
 ships_left -= 1

Collisions between two groups
The sprite.groupcollide() function takes two groups, and two
booleans. The function returns a dictionary containing information
about the members that have collided. The booleans tell Pygame
whether to delete the members of either group that have collided.

collisions = pg.sprite.groupcollide(
 bullets, aliens, True, True)

score += len(collisions) * alien_point_value

The Pygame documentation is really helpful when building
your own games. The home page for the Pygame project is
at http://pygame.org/, and the home page for the
documentation is at http://pygame.org/docs/.
 The most useful part of the documentation are the pages
about specific parts of Pygame, such as the Rect() class
and the sprite module. You can find a list of these elements
at the top of the help pages.

You can use text for a variety of purposes in a game. For
example you can share information with players, and you
can display a score.

Displaying a message
The following code defines a message, then a color for the text and
the background color for the message. A font is defined using the
default system font, with a font size of 48. The font.render()
function is used to create an image of the message, and we get the
rect object associated with the image. We then center the image
on the screen and display it.

msg = "Play again?"
msg_color = (100, 100, 100)
bg_color = (230, 230, 230)

f = pg.font.SysFont(None, 48)
msg_image = f.render(msg, True, msg_color,
 bg_color)
msg_image_rect = msg_image.get_rect()
msg_image_rect.center = screen_rect.center
screen.blit(msg_image, msg_image_rect)

Covers Python 3 and Python 2

Emphasizing points
You can plot as much data as you want on one plot. Here we re-
plot the first and last points larger to emphasize them.

import matplotlib.pyplot as plt

x_values = list(range(1000))
squares = [x**2 for x in x_values]
plt.scatter(x_values, squares, c=squares,
 cmap=plt.cm.Blues, edgecolor='none',
 s=10)

plt.scatter(x_values[0], squares[0], c='green',
 edgecolor='none', s=100)
plt.scatter(x_values[-1], squares[-1], c='red',
 edgecolor='none', s=100)

plt.title("Square Numbers", fontsize=24)
--snip--

Removing axes
You can customize or remove axes entirely. Here’s how to access
each axis, and hide it.

plt.axes().get_xaxis().set_visible(False)
plt.axes().get_yaxis().set_visible(False)

Setting a custom figure size
You can make your plot as big or small as you want. Before
plotting your data, add the following code. The dpi argument is
optional; if you don’t know your system’s resolution you can omit
the argument and adjust the figsize argument accordingly.

plt.figure(dpi=128, figsize=(10, 6))

Saving a plot
The matplotlib viewer has an interactive save button, but you can
also save your visualizations programmatically. To do so, replace
plt.show() with plt.savefig(). The bbox_inches='tight'
argument trims extra whitespace from the plot.

plt.savefig('squares.png', bbox_inches='tight')

Data visualization involves exploring data through
visual representations. The matplotlib package helps
you make visually appealing representations of the
data you’re working with. matplotlib is extremely
flexible; these examples will help you get started with
a few simple visualizations.

matplotlib runs on all systems, but setup is slightly different
depending on your OS. If the minimal instructions here
don’t work for you, see the more detailed instructions at
http://ehmatthes.github.io/pcc/. You should also consider
installing the Anaconda distrubution of Python from
https://continuum.io/downloads/, which includes matplotlib.

matplotlib on Linux

$ sudo apt-get install python3-matplotlib

matplotlib on OS X
Start a terminal session and enter import matplotlib to see if
it’s already installed on your system. If not, try this command:

$ pip install --user matplotlib

matplotlib on Windows
You first need to install Visual Studio, which you can do from
https://dev.windows.com/. The Community edition is free. Then go
to https://pypi.python.org/pypi/matplotlib/ or
http://www.lfd.uic.edu/~gohlke/pythonlibs/#matplotlib and download
an appropriate installer file.

Making a scatter plot
The scatter() function takes a list of x values and a list of y values,
and a variety of optional arguments. The s=10 argument controls

the size of each point.

import matplotlib.pyplot as plt

x_values = list(range(1000))
squares = [x**2 for x in x_values]

plt.scatter(x_values, squares, s=10)
plt.show()

Making a line graph

import matplotlib.pyplot as plt

x_values = [0, 1, 2, 3, 4, 5]
squares = [0, 1, 4, 9, 16, 25]
plt.plot(x_values, squares)
plt.show()

Plots can be customized in a wide variety of ways. Just
about any element of a plot can be customized.

Adding titles and labels, and scaling axes

import matplotlib.pyplot as plt

x_values = list(range(1000))
squares = [x**2 for x in x_values]
plt.scatter(x_values, squares, s=10)

plt.title("Square Numbers", fontsize=24)
plt.xlabel("Value", fontsize=18)
plt.ylabel("Square of Value", fontsize=18)
plt.tick_params(axis='both', which='major',
 labelsize=14)
plt.axis([0, 1100, 0, 1100000])

plt.show()

Using a colormap
A colormap varies the point colors from one shade to another,
based on a certain value for each point. The value used to
determine the color of each point is passed to the c argument, and

the cmap argument specifies which colormap to use.

 The edgecolor='none' argument removes the black outline

from each point.

plt.scatter(x_values, squares, c=squares,
 cmap=plt.cm.Blues, edgecolor='none',
 s=10)

The matplotlib gallery and documentation are at
http://matplotlib.org/. Be sure to visit the examples, gallery,
and pyplot links.

You can make as many plots as you want on one figure.
When you make multiple plots, you can emphasize
relationships in the data. For example you can fill the space
between two sets of data.

Plotting two sets of data
Here we use plt.scatter() twice to plot square numbers and
cubes on the same figure.

import matplotlib.pyplot as plt

x_values = list(range(11))
squares = [x**2 for x in x_values]
cubes = [x**3 for x in x_values]

plt.scatter(x_values, squares, c='blue',
 edgecolor='none', s=20)
plt.scatter(x_values, cubes, c='red',
 edgecolor='none', s=20)

plt.axis([0, 11, 0, 1100])
plt.show()

Filling the space between data sets
The fill_between() method fills the space between two data
sets. It takes a series of x-values and two series of y-values. It also
takes a facecolor to use for the fill, and an optional alpha
argument that controls the color’s transparency.

plt.fill_between(x_values, cubes, squares,
 facecolor='blue', alpha=0.25)

Datetime formatting arguments
The strftime() function generates a formatted string from a

datetime object, and the strptime() function genereates a
datetime object from a string. The following codes let you work with
dates exactly as you need to.

%A Weekday name, such as Monday
%B Month name, such as January
%m Month, as a number (01 to 12)
%d Day of the month, as a number (01 to 31)
%Y Four-digit year, such as 2016
%y Two-digit year, such as 16
%H Hour, in 24-hour format (00 to 23)
%I Hour, in 12-hour format (01 to 12)
%p AM or PM
%M Minutes (00 to 59)
%S Seconds (00 to 61)

Converting a string to a datetime object

new_years = dt.strptime('1/1/2017', '%m/%d/%Y')

Converting a datetime object to a string

ny_string = dt.strftime(new_years, '%B %d, %Y')
print(ny_string)

Plotting high temperatures
The following code creates a list of dates and a corresponding list
of high temperatures. It then plots the high temperatures, with the
date labels displayed in a specific format.

from datetime import datetime as dt

import matplotlib.pyplot as plt
from matplotlib import dates as mdates

dates = [
 dt(2016, 6, 21), dt(2016, 6, 22),
 dt(2016, 6, 23), dt(2016, 6, 24),
]

highs = [57, 68, 64, 59]

fig = plt.figure(dpi=128, figsize=(10,6))
plt.plot(dates, highs, c='red')
plt.title("Daily High Temps", fontsize=24)
plt.ylabel("Temp (F)", fontsize=16)

x_axis = plt.axes().get_xaxis()
x_axis.set_major_formatter(
 mdates.DateFormatter('%B %d %Y')
)
fig.autofmt_xdate()

plt.show()

More cheat sheets available at

You can include as many individual graphs in one figure as
you want. This is useful, for example, when comparing
related datasets.

Sharing an x-axis
The following code plots a set of squares and a set of cubes on
two separate graphs that share a common x-axis.
 The plt.subplots() function returns a figure object and a tuple
of axes. Each set of axes corresponds to a separate plot in the
figure. The first two arguments control the number of rows and
columns generated in the figure.

import matplotlib.pyplot as plt

x_vals = list(range(11))
squares = [x**2 for x in x_vals]
cubes = [x**3 for x in x_vals]

fig, axarr = plt.subplots(2, 1, sharex=True)

axarr[0].scatter(x_vals, squares)
axarr[0].set_title('Squares')

axarr[1].scatter(x_vals, cubes, c='red')
axarr[1].set_title('Cubes')

plt.show()

Sharing a y-axis
To share a y-axis, we use the sharey=True argument.

import matplotlib.pyplot as plt

x_vals = list(range(11))
squares = [x**2 for x in x_vals]
cubes = [x**3 for x in x_vals]

fig, axarr = plt.subplots(1, 2, sharey=True)

axarr[0].scatter(x_vals, squares)
axarr[0].set_title('Squares')

axarr[1].scatter(x_vals, cubes, c='red')
axarr[1].set_title('Cubes')

plt.show()

Many interesting data sets have a date or time as the x-
value. Python’s datetime module helps you work with this
kind of data.

Generating the current date
The datetime.now() function returns a datetime object

representing the current date and time.

from datetime import datetime as dt

today = dt.now()
date_string = dt.strftime(today, '%m/%d/%Y')
print(date_string)

Generating a specific date
You can also generate a datetime object for any date and time you
want. The positional order of arguments is year, month, and day.
The hour, minute, second, and microsecond arguments are
optional.

from datetime import datetime as dt

new_years = dt(2017, 1, 1)
fall_equinox = dt(year=2016, month=9, day=22)

Making a scatter plot
The data for a scatter plot needs to be a list containing tuples of
the form (x, y). The stroke=False argument tells Pygal to make
an XY chart with no line connecting the points.

import pygal

squares = [
 (0, 0), (1, 1), (2, 4), (3, 9),
 (4, 16), (5, 25),
]

chart = pygal.XY(stroke=False)
chart.force_uri_protocol = 'http'
chart.add('x^2', squares)
chart.render_to_file('squares.svg')

Using a list comprehension for a scatter plot
A list comprehension can be used to effficiently make a dataset for
a scatter plot.

squares = [(x, x**2) for x in range(1000)]

Making a bar graph
A bar graph requires a list of values for the bar sizes. To label the
bars, pass a list of the same length to x_labels.

import pygal

outcomes = [1, 2, 3, 4, 5, 6]
frequencies = [18, 16, 18, 17, 18, 13]

chart = pygal.Bar()
chart.force_uri_protocol = 'http'
chart.x_labels = outcomes
chart.add('D6', frequencies)
chart.render_to_file('rolling_dice.svg')

Making a bar graph from a dictionary
Since each bar needs a label and a value, a dictionary is a great
way to store the data for a bar graph. The keys are used as the
labels along the x-axis, and the values are used to determine the
height of each bar.

import pygal

results = {
 1:18, 2:16, 3:18,
 4:17, 5:18, 6:13,
 }

chart = pygal.Bar()
chart.force_uri_protocol = 'http'
chart.x_labels = results.keys()
chart.add('D6', results.values())
chart.render_to_file('rolling_dice.svg')

Covers Python 3 and Python 2

You can add as much data as you want when making a
visualization.

Plotting squares and cubes

import pygal

x_values = list(range(11))
squares = [x**2 for x in x_values]
cubes = [x**3 for x in x_values]

chart = pygal.Line()
chart.force_uri_protocol = 'http'
chart.title = "Squares and Cubes"
chart.x_labels = x_values

chart.add('Squares', squares)
chart.add('Cubes', cubes)
chart.render_to_file('squares_cubes.svg')

Filling the area under a data series
Pygal allows you to fill the area under or over each series of data.
The default is to fill from the x-axis up, but you can fill from any
horizontal line using the zero argument.

chart = pygal.Line(fill=True, zero=0)

Data visualization involves exploring data through
visual representations. Pygal helps you make visually
appealing representations of the data you’re working
with. Pygal is particularly well suited for visualizations
that will be presented online, because it supports
interactive elements.

Pygal can be installed using pip.

Pygal on Linux and OS X

$ pip install --user pygal

Pygal on Windows

> python –m pip install --user pygal

To make a plot with Pygal, you specify the kind of plot and
then add the data.

Making a line graph
To view the output, open the file squares.svg in a browser.

import pygal

x_values = [0, 1, 2, 3, 4, 5]
squares = [0, 1, 4, 9, 16, 25]

chart = pygal.Line()
chart.force_uri_protocol = 'http'
chart.add('x^2', squares)
chart.render_to_file('squares.svg')

Adding labels and a title

--snip--
chart = pygal.Line()
chart.force_uri_protocol = 'http'
chart.title = "Squares"
chart.x_labels = x_values
chart.x_title = "Value"
chart.y_title = "Square of Value"
chart.add('x^2', squares)
chart.render_to_file('squares.svg')

The documentation for Pygal is available at
http://www.pygal.org/.

If you’re viewing svg output in a browser, Pygal needs to
render the output file in a specific way. The
force_uri_protocol attribute for chart objects needs to

be set to 'http'.

Pygal lets you customize many elements of a plot. There
are some excellent default themes, and many options for
styling individual plot elements.

Using built-in styles
To use built-in styles, import the style and make an instance of the
style class. Then pass the style object with the style argument
when you make the chart object.

import pygal
from pygal.style import LightGreenStyle

x_values = list(range(11))
squares = [x**2 for x in x_values]
cubes = [x**3 for x in x_values]

chart_style = LightGreenStyle()
chart = pygal.Line(style=chart_style)
chart.force_uri_protocol = 'http'
chart.title = "Squares and Cubes"
chart.x_labels = x_values

chart.add('Squares', squares)
chart.add('Cubes', cubes)
chart.render_to_file('squares_cubes.svg')

Parametric built-in styles
Some built-in styles accept a custom color, then generate a theme
based on that color.

from pygal.style import LightenStyle

--snip--
chart_style = LightenStyle('#336688')
chart = pygal.Line(style=chart_style)
--snip--

Customizing individual style properties
Style objects have a number of properties you can set individually.

chart_style = LightenStyle('#336688')
chart_style.plot_background = '#CCCCCC'
chart_style.major_label_font_size = 20
chart_style.label_font_size = 16
--snip--

Custom style class
You can start with a bare style class, and then set only the
properties you care about.

chart_style = Style()
chart_style.colors = [
 '#CCCCCC', '#AAAAAA', '#888888']
chart_style.plot_background = '#EEEEEE'

chart = pygal.Line(style=chart_style)
--snip--

Configuration settings
Some settings are controlled by a Config object.

my_config = pygal.Config()
my_config.show_y_guides = False
my_config.width = 1000
my_config.dots_size = 5

chart = pygal.Line(config=my_config)
--snip--

Styling series
You can give each series on a chart different style settings.

chart.add('Squares', squares, dots_size=2)
chart.add('Cubes', cubes, dots_size=3)

Styling individual data points
You can style individual data points as well. To do so, write a
dictionary for each data point you want to customize. A 'value'
key is required, and other properies are optional.

import pygal

repos = [
 {
 'value': 20506,
 'color': '#3333CC',
 'xlink': 'http://djangoproject.com/',
 },
 20054,
 12607,
 11827,
]

chart = pygal.Bar()
chart.force_uri_protocol = 'http'
chart.x_labels = [
 'django', 'requests', 'scikit-learn',
 'tornado',
]
chart.y_title = 'Stars'
chart.add('Python Repos', repos)
chart.render_to_file('python_repos.svg')

More cheat sheets available at

Pygal can generate world maps, and you can add any data
you want to these maps. Data is indicated by coloring, by
labels, and by tooltips that show data when users hover
over each country on the map.

Installing the world map module
The world map module is not included by default in Pygal 2.0. It
can be installed with pip:

$ pip install --user pygal_maps_world

Making a world map
The following code makes a simple world map showing the
countries of North America.

from pygal.maps.world import World

wm = World()
wm.force_uri_protocol = 'http'
wm.title = 'North America'
wm.add('North America', ['ca', 'mx', 'us'])

wm.render_to_file('north_america.svg')

Showing all the country codes
In order to make maps, you need to know Pygal’s country codes.
The following example will print an alphabetical list of each country
and its code.

from pygal.maps.world import COUNTRIES

for code in sorted(COUNTRIES.keys()):
 print(code, COUNTRIES[code])

Plotting numerical data on a world map
To plot numerical data on a map, pass a dictionary to add()
instead of a list.

from pygal.maps.world import World

populations = {
 'ca': 34126000,
 'us': 309349000,
 'mx': 113423000,
 }

wm = World()
wm.force_uri_protocol = 'http'
wm.title = 'Population of North America'
wm.add('North America', populations)

wm.render_to_file('na_populations.svg')

Covers Python 3 and Python 2

Users interact with a project through web pages, and a
project’s home page can start out as a simple page with no
data. A page usually needs a URL, a view, and a template.

Mapping a project’s URLs
The project’s main urls.py file tells Django where to find the urls.py
files associated with each app in the project.

from django.conf.urls import include, url
from django.contrib import admin

urlpatterns = [
 url(r'^admin/', include(admin.site.urls)),
 url(r'', include('learning_logs.urls',
 namespace='learning_logs')),
]

Mapping an app’s URLs
An app’s urls.py file tells Django which view to use for each URL in
the app. You’ll need to make this file yourself, and save it in the
app’s folder.

from django.conf.urls import url

from . import views

urlpatterns = [
 url(r'^$', views.index, name='index'),
]

Writing a simple view
A view takes information from a request and sends data to the
browser, often through a template. View functions are stored in an
app’s views.py file. This simple view function doesn’t pull in any
data, but it uses the template index.html to render the home page.

from django.shortcuts import render

def index(request):
 """The home page for Learning Log."""
 return render(request,
 'learning_logs/index.html')

Django is a web framework which helps you build
interactive websites using Python. With Django you
define the kind of data your site needs to work with,
and you define the ways your users can work with
that data.

It’s usualy best to install Django to a virtual environment,
where your project can be isolated from your other Python
projects. Most commands assume you’re working in an
active virtual environment.

Create a virtual environment

$ python –m venv ll_env

Activate the environment (Linux and OS X)

$ source ll_env/bin/activate

Activate the environment (Windows)

> ll_env\Scripts\activate

Install Django to the active environment

(ll_env)$ pip install Django

The data in a Django project is structured as a set of
models.

Defining a model
To define the models for your app, modify the file models.py that
was created in your app’s folder. The __str__() method tells
Django how to represent data objects based on this model.

from django.db import models

class Topic(models.Model):
 """A topic the user is learning about."""
 text = models.CharField(max_length=200)
 date_added = models.DateTimeField(
 auto_now_add=True)

 def __str__(self):
 return self.text

Activating a model
To use a model the app must be added to the tuple
INSTALLED_APPS, which is stored in the project’s settings.py file.

INSTALLED_APPS = (
 --snip--
 'django.contrib.staticfiles',

 # My apps
 'learning_logs',
)

Migrating the database
The database needs to be modified to store the kind of data that
the model represents.

$ python manage.py makemigrations learning_logs
$ python manage.py migrate

Creating a superuser
A superuser is a user account that has access to all aspects of the
project.

$ python manage.py createsuperuser

Registering a model
You can register your models with Django’s admin site, which
makes it easier to work with the data in your project. To do this,
modify the app’s admin.py file. View the admin site at
http://localhost:8000/admin/.

from django.contrib import admin

from learning_logs.models import Topic

admin.site.register(Topic)

To start a project we’ll create a new project, create a
database, and start a development server.

Create a new project

$ django-admin.py startproject learning_log .

Create a database

$ python manage.py migrate

View the project
After issuing this command, you can view the project at
http://localhost:8000/.

$ python manage.py runserver

Create a new app
A Django project is made up of one or more apps.

$ python manage.py startapp learning_logs

The documentation for Django is available at
http://docs.djangoproject.com/. The Django documentation
is thorough and user-friendly, so check it out!

Writing a simple template
A template sets up the structure for a page. It’s a mix of html and
template code, which is like Python but not as powerful. Make a
folder called templates inside the project folder. Inside the
templates folder make another folder with the same name as the
app. This is where the template files should be saved.

<p>Learning Log</p>

<p>Learning Log helps you keep track of your
learning, for any topic you're learning
about.</p>

A new model can use an existing model. The ForeignKey
attribute establishes a connection between instances of the
two related models. Make sure to migrate the database
after adding a new model to your app.

Defining a model with a foreign key

class Entry(models.Model):
 """Learning log entries for a topic."""
 topic = models.ForeignKey(Topic)
 text = models.TextField()
 date_added = models.DateTimeField(
 auto_now_add=True)

 def __str__(self):
 return self.text[:50] + "..."

More cheat sheets available at

Using data in a template
The data in the view function’s context dictionary is available
within the template. This data is accessed using template
variables, which are indicated by doubled curly braces.
 The vertical line after a template variable indicates a filter. In this
case a filter called date formats date objects, and the filter

linebreaks renders paragraphs properly on a web page.

{% extends 'learning_logs/base.html' %}

{% block content %}

 <p>Topic: {{ topic }}</p>

 <p>Entries:</p>

 {% for entry in entries %}

 <p>
 {{ entry.date_added|date:'M d, Y H:i' }}
 </p>
 <p>
 {{ entry.text|linebreaks }}
 </p>

 {% empty %}
 There are no entries yet.
 {% endfor %}

{% endblock content %}

Many elements of a web page are repeated on every page
in the site, or every page in a section of the site. By writing
one parent template for the site, and one for each section,
you can easily modify the look and feel of your entire site.

The parent template
The parent template defines the elements common to a set of
pages, and defines blocks that will be filled by individual pages.

<p>

 Learning Log

</p>

{% block content %}{% endblock content %}

The child template
The child template uses the {% extends %} template tag to pull in
the structure of the parent template. It then defines the content for
any blocks defined in the parent template.

{% extends 'learning_logs/base.html' %}

{% block content %}
 <p>
 Learning Log helps you keep track
 of your learning, for any topic you're
 learning about.
 </p>
{% endblock content %}

Most pages in a project need to present data that’s specific
to the current user.

URL parameters
A URL often needs to accept a parameter telling it which data to
access from the database. The second URL pattern shown here
looks for the ID of a specific topic and stores it in the parameter
topic_id.

urlpatterns = [
 url(r'^$', views.index, name='index'),
 url(r'^topics/(?P<topic_id>\d+)/$',
 views.topic, name='topic'),
]

Using data in a view
The view uses a parameter from the URL to pull the correct data
from the database. In this example the view is sending a context
dictionary to the template, containing data that should be displayed
on the page.

def topic(request, topic_id):
 """Show a topic and all its entries."""
 topic = Topics.objects.get(id=topic_id)
 entries = topic.entry_set.order_by(
 '-date_added')
 context = {
 'topic': topic,
 'entries': entries,
 }
 return render(request,
 'learning_logs/topic.html', context)

You can explore the data in your project from the command
line. This is helpful for developing queries and testing code
snippets.

Start a shell session

$ python manage.py shell

Access data from the project

>>> from learning_logs.models import Topic
>>> Topic.objects.all()
[<Topic: Chess>, <Topic: Rock Climbing>]
>>> topic = Topic.objects.get(id=1)
>>> topic.text
'Chess'

If you make a change to your project and the change
doesn’t seem to have any effect, try restarting the server:
$ python manage.py runserver

Python code is usually indented by four spaces. In
templates you’ll often see two spaces used for indentation,
because elements tend to be nested more deeply in
templates.

Covers Python 3 and Python 2

Showing the current login status
You can modify the base.html template to show whether the user is
currently logged in, and to provide a link to the login and logout
pages. Django makes a user object available to every template,

and this template takes advantage of this object.
 The user.is_authenticated tag allows you to serve specific

content to users depending on whether they have logged in or not.
The {{ user.username }} property allows you to greet users

who have logged in. Users who haven’t logged in see links to
register or log in.

<p>

 Learning Log

 {% if user.is_authenticated %}
 Hello, {{ user.username }}.

 log out

 {% else %}

 register
 -

 log in

 {% endif %}
</p>

{% block content %}{% endblock content %}

The logout view
The logout_view() function uses Django’s logout() function
and then redirects the user back to the home page. Since there is
no logout page, there is no logout template. Make sure to write this
code in the views.py file that’s stored in the users app folder.

from django.http import HttpResponseRedirect
from django.core.urlresolvers import reverse
from django.contrib.auth import logout

def logout_view(request):
 """Log the user out."""
 logout(request)
 return HttpResponseRedirect(
 reverse('learning_logs:index'))

User accounts are handled by a dedicated app called
users. Users need to be able to register, log in, and log

out. Django automates much of this work for you.

Making a users app
After making the app, be sure to add 'users' to INSTALLED_APPS
in the project’s settings.py file.

$ python manage.py startapp users

Including URLS for the users app
Add a line to the project’s urls.py file so the users app’s URLs are
included in the project.

urlpatterns = [
 url(r'^admin/', include(admin.site.urls)),
 url(r'^users/', include('users.urls',
 namespace='users')),
 url(r'', include('learning_logs.urls',
 namespace='learning_logs')),
]

Defining the URLs
Users will need to be able to log in, log out, and register. Make a
new urls.py file in the users app folder. The login view is a default

view provided by Django.

from django.conf.urls import url
from django.contrib.auth.views import login

from . import views

urlpatterns = [
 url(r'^login/$', login,
 {'template_name': 'users/login.html'},
 name='login'),
 url(r'^logout/$', views.logout_view,
 name='logout'),
 url(r'^register/$', views.register,
 name='register'),
]

The login template
The login view is provided by default, but you need to provide your
own login template. The template shown here displays a simple
login form, and provides basic error messages. Make a templates
folder in the users folder, and then make a users folder in the
templates folder. Save this file as login.html.
 The tag {% csrf_token %} helps prevent a common type of

attack with forms. The {{ form.as_p }} element displays the

default login form in paragraph format. The <input> element

named next redirects the user to the home page after a successful

login.

{% extends "learning_logs/base.html" %}

{% block content %}
 {% if form.errors %}
 <p>
 Your username and password didn't match.
 Please try again.
 </p>
 {% endif %}

 <form method="post"
 action="{% url 'users:login' %}">
 {% csrf token %}
 {{ form.as_p }}
 <button name="submit">log in</button>

 <input type="hidden" name="next"
 value="{% url 'learning_logs:index' %}"/>
 </form>

{% endblock content %}

Most web applications need to let users create
accounts. This lets users create and work with their
own data. Some of this data may be private, and
some may be public. Django’s forms allow users to
enter and modify their data.

There are a number of ways to create forms and work with
them. You can use Django’s defaults, or completely
customize your forms. For a simple way to let users enter
data based on your models, use a ModelForm. This creates

a form that allows users to enter data that will populate the
fields on a model.
 The register view on the back of this sheet shows a simple
approach to form processing. If the view doesn’t receive
data from a form, it responds with a blank form. If it
receives POST data from a form, it validates the data and

then saves it to the database.

The register view
The register view needs to display a blank registration form when
the page is first requested, and then process completed
registration forms. A successful registration logs the user in and
redirects to the home page.

from django.contrib.auth import login
from django.contrib.auth import authenticate
from django.contrib.auth.forms import \
 UserCreationForm

def register(request):
 """Register a new user."""
 if request.method != 'POST':
 # Show blank registration form.
 form = UserCreationForm()
 else:
 # Process completed form.
 form = UserCreationForm(
 data=request.POST)

 if form.is_valid():
 new_user = form.save()
 # Log in, redirect to home page.
 pw = request.POST['password1']
 authenticated_user = authenticate(
 username=new_user.username,
 password=pw
)
 login(request, authenticated_user)
 return HttpResponseRedirect(
 reverse('learning_logs:index'))

 context = {'form': form}
 return render(request,
 'users/register.html', context)

The register template
The register template displays the registration form in paragraph
formats.

{% extends 'learning_logs/base.html' %}

{% block content %}

 <form method='post'
 action="{% url 'users:register' %}">

 {% csrf_token %}
 {{ form.as_p }}

 <button name='submit'>register</button>
 <input type='hidden' name='next'
 value="{% url 'learning_logs:index' %}"/>

 </form>

{% endblock content %}

More cheat sheets available at

Restricting access to logged-in users
Some pages are only relevant to registered users. The views for
these pages can be protected by the @login_required decorator.

Any view with this decorator will automatically redirect non-logged
in users to an appropriate page. Here’s an example views.py file.

from django.contrib.auth.decorators import /
 login_required
--snip--

@login_required
def topic(request, topic_id):
 """Show a topic and all its entries."""

Setting the redirect URL
The @login_required decorator sends unauthorized users to the

login page. Add the following line to your project’s settings.py file
so Django will know how to find your login page.

LOGIN_URL = '/users/login/'

Preventing inadvertent access
Some pages serve data based on a parameter in the URL. You
can check that the current user owns the requested data, and
return a 404 error if they don’t. Here’s an example view.

from django.http import Http404

--snip--
def topic(request, topic_id):
 """Show a topic and all its entries."""
 topic = Topics.objects.get(id=topic_id)
 if topic.owner != request.user:
 raise Http404
 --snip--

Users will have data that belongs to them. Any model that should
be connected directly to a user needs a field connecting instances
of the model to a specific user.

Making a topic belong to a user
Only the highest-level data in a hierarchy needs to be directly
connected to a user. To do this import the User model, and add it

as a foreign key on the data model.
 After modifying the model you’ll need to migrate the database.
You’ll need to choose a user ID to connect each existing instance
to.

from django.db import models
from django.contrib.auth.models import User

class Topic(models.Model):
 """A topic the user is learning about."""
 text = models.CharField(max_length=200)
 date_added = models.DateTimeField(
 auto_now_add=True)
 owner = models.ForeignKey(User)

 def __str__(self):
 return self.text

Querying data for the current user
In a view, the request object has a user attribute. You can use this

attribute to query for the user’s data. The filter() function then
pulls the data that belongs to the current user.

topics = Topic.objects.filter(
 owner=request.user)

The django-bootstrap3 app allows you to use the Bootstrap
library to make your project look visually appealing. The
app provides tags that you can use in your templates to
style individual elements on a page. Learn more at
http://django-bootstrap3.readthedocs.io/.

If you provide some initial data, Django generates a form
with the user’s existing data. Users can then modify and
save their data.

Creating a form with initial data
The instance parameter allows you to specify initial data for a form.

form = EntryForm(instance=entry)

Modifying data before saving
The argument commit=False allows you to make changes before
writing data to the database.

new_topic = form.save(commit=False)
new_topic.owner = request.user
new_topic.save()

Heroku lets you push your project to a live server, making it
available to anyone with an internet connection. Heroku
offers a free service level, which lets you learn the
deployment process without any commitment. You’ll need
to install a set of heroku tools, and use git to track the state
of your project. See http://devcenter.heroku.com/, and click
on the Python link.

